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the identification of 7Y with the mass density, and 
admitting in our relativistic treatment that the total 
mass of the universe might depend on the mean radius 
of curvature of its space.31 We may interpret this de
pendence either as the creation of matter possessing 
invariable gravitational properties, or as a variation of 
the gravitational properties of matter (in the sense of 
mutual action of matter proposed by Einstein)19 the 
total quantity of which remains constant in the uni-

31 Consequences of the assumption that the mean-mass density 
varies as the function p=pi(Gi/G)3+n, pi being the density at the 
radius Gi, and n a real constant, are investigated in J. Pachner, 
Acta Phys. Polon. 23, 133 (1963). 

I. INTRODUCTION 

THIS paper is an attempt to answer some questions 
suggested by a recent study of special relativistic 

invariance in Hamiltonian particle dynamics.1'2 This 
study has emphasized two distinct aspects of relativistic 
invariance. The first of these is the symmetry of the 
theory under the inhomogeneous Lorentz group, re
flecting the principle of special relativity that the laws 
of physics should be invariant under transformations 
of reference frames. This symmetry is guaranteed by 
postulating the existence of ten infinitesimal generators 
H, P, J, K, for time translations, space translations, 
space rotations, and pure Lorentz transformations, re-
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verse. The latter variation is caused by the variation 
of the mass of matter, in contra-distinction to the 
hypothesis of Dirac32 who assumed a dependence of the 
gravitational " constant'' on the radius of the universe. 
Whether such variations do occur in our universe or not, 
only experience can decide. The recent observations of 
Ambarzumian,33 who found that the central regions of 
certain galaxies are the sources of an intensive emana
tion of matter, indicate that such a possibility can
not be a priori excluded. 

32 P. A. M. Dirac, Proc. Roy. Soc. (London) A165, 199 (1938). 
33 V. A. Ambarzumian, Voprosy kosmogonii, torn VIII (Moscow, 

1962), pp. 21-23. 

spectively, satisfying the bracket equations 

[Py,P*] = 0, [Py,F]=0, [/*,ff]=0, 

[Ji,Kj] — eijicKk, [KjJEL] = Pj, 

iKifol^-eaiJk, ZKM = 6jhH (A) 

which are characteristic of the inhomogeneous Lorentz 
group.1,3 (We choose units in which h—c= 1. The sum
mation convention is used for the indices i, j , &= 1,2,3. 
In classical mechanics the brackets are Poisson brackets. 
In quantum mechanics they are commutators divided 
by L This notation is maintained throughout the 
paper.) 

The second aspect involves the explicit transforma
tion properties of space-time events and gives the 

3 P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949). 
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equations 

\_J iyXj J =- €ijkX]c , 

[xhKk~]=\ (%£%j9H]+[xjfllxk), (B) 

to be satisfied by Cartesian particle position variables 
x. In classical mechanics Eqs. (B) are necessary and 
sufficient conditions for the time-dependent values of 
the position variables to transform in the familiar 
manner of space-time events under space translations, 
space rotations, and pure Lorentz transformations.1 In 
particular, the last equation, which is the least familiar, 
is equivalent to the Lorentz transformation formula. 
The first two of Eqs. (B) have a •similar meaning in 
quantum mechanics, but the status of the last equation 
in quantum mechanics is not so clear.1 Equations (A) 
and (B) have been used to prove theorems that there 
can be no interaction in a classical mechanical system 
of two or three particles.1-4 These theorems have dealt 
only with particles of zero spin. 

In the present paper we seek to determine the role of 
Eqs. (B) in quantum mechanics, especially the role of 
the last of Eqs. (B) in the quantum mechanics of par
ticles with spin. To begin, we confine our attention to a 
single free particle of positive mass m and spin s; we 
take H, P, J, K to be the Hermitian operators which 
are generators of the irreducible unitary representation 
of the inhomogeneous Lorentz group which is character
ized by mass m and spin s. We work with canonical 
forms for these generators in terms of canonical co
ordinate, momentum, and spin operators q, p, and S 
and look for operators x satisfying Eqs. (B). 

In Sec. II we find that for zero spin Eqs. (B) have a 
unique solution for x. With the canonical forms for H, 
P, J, K, this is just the canonical coordinate x=q. It is 
essentially the same as the position operator found by 
Newton and Wigner5 and also agrees with various 
definitions of Pryce.6 For zero spin it is no problem to 
find a satisfactory position operator satisfying our con
ditions (B) for relativistic covariance. The solution is 
simple and has been found by a variety of approaches. 

In Sec. I l l we find that for positive spin Eqs. (B) 
have a one-parameter family of solutions for x. All of 
these solutions fail to satisfy the equations 

[xj,Xk2=0- (C) 

Since it is desirable for many purposes to have a position 
operator whose different components commute, we 
conclude that it is not possible to have a completely 
satisfactory position operator satisfying the conditions 
(B) for relativistic covariance for a single particle of 
positive mass and positive spin. This is again in accord 
with findings of Newton and Wigner5 and of Pryce.6 

4 J. T. Cannon and T. F. Jordan, University of Rochester 
Report NYO-10263 (to be published). 

6 T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 
(1949). 

6 M. H. L. Pryce, Proc. Roy. Soc. (London) A195, 62 (1948). 

In Sec. IV we expand the scope of our investigation 
to include antiparticle as well as particle states. Equa
tions (B) and (C) then do have a solution. It is the 
Foldy-Wouthuysen transform7 of the operators x that 
appear as independent variables in the Dirac equation. 
This turns out to be a solution of Eqs. (B) and (C) for 
all values of the spin, not just for spin 1/2. It reduces 
to the canonical coordinates x=q for zero spin. Further
more, it is the unique solution of Eqs. (B) and (C) 
having these properties. Equations (B) and (C) lead 
us in a rather unique manner to operators x which 
generalize the canonical position for zero spin and the 
position operators of the spin-1/2 Dirac equation to 
any value of the spin. 

The generalized Dirac position operators lead us, in 
turn, to a generalization of the Foldy-Wouthuysen 
transformation7 which is valid for any value of the 
spin. The generalized inverse Foldy-Wouthuysen trans
formation appears as the essentially unique unitary 
transformation which takes the generalized Dirac 
position operator to the canonical position x==q while 
leaving the canonical forms for P and J unchanged. 

In Sec. V the generalized inverse Foldy-Wouthuysen 
transformation is applied to the canonical form of the 
Hamiltonian operator to provide a basis for the syn
thesis of invariant wave equations in the spirit of 
Foldy.8 For spin 1/2 the transformed Hamiltonian 
operator reduces, of course, to the Dirac equation 
Hamiltonian. Although this is entirely expected, our 
work to this point could be viewed as a derivation of the 
Dirac equation from the fundamental principles formu
lated in Eqs. (A), (B), and (C). We are led to the 
Dirac equation by a logical series of steps beginning 
with solutions of Eqs. (A), (B), and (C). 

For spin 1 the inverse Foldy-Wouthuysen trans
formed Hamiltonian gives a Schrodinger equation which 
is not local in coordinate space. Further manipulations 
are needed to get the local invariant Proca equations. 
As far as we know, the nonlocal equation has not pre
viously appeared in the literature. From our point of 
view, it is more nearly the spin 1 analog of the Dirac 
equation than is the Schrodinger equation form of the 
Proca equations. We note that the Hamiltonian of the 
nonlocal equation is Hermitian while that of the Proca 
equations is pseudo-Hermitian. We compare the 
unitary generalized Foldy-Wouthuysen transformation 
with the pseudo-unitary transformation that takes the 
canonical form of the Hamiltonian directly to the 
Hamiltonian of the Proca equations. The latter does 
not have all the same properties as the former. In par
ticular, its inverse takes the operators x that appear as 
independent variables in the Proca equations to opera
tors that do not satisfy the last of Eqs. (B). 

7 L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950). 
8 L . L. Foldy, Phys. Rev. 102, 56S (1956). 
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II. PARTICLES WITH NO SPIN 

Let us first consider a single particle of positive mass 
m and zero spin. From a mathematical point of view, 
we are interested in Hermitian operators H, P, J, K 
which satisfy Eqs. (A) and generate the irreducible 
unitary representation of the inhomogeneous Lorentz 
group which is characterized by mass m, zero spin, and 
positive energy.9 We are also interested in Hermitian 
operators x satisfying Eqs. (B) and (C). A canonical 
form for these operators is 

H=(tf+neyi*, (2.1) 
P=p, (2.2) 

J=qXp, (2.3) 

K=4(#q+q#) , (2.4) 

x=q, (2.5) 

where q and p are an irreducible set of Hermitian 
operators satisfying the commutation relations 

[#>0k]=O=|>y,K] / 2 6 ) 

for y, &= 1,2,3. 
To within unitary equivalence, the operators (2.1)-

(2.5) are the only solution of Eqs. (A) and (B) for a 
particle of mass m and zero spin. For, to within unitary 
equivalence, there is only one irreducible unitary repre
sentation of the inhomogeneous Lorentz group with 
positive mass m, zero spin, and positive energy9; by 
making a unitary transformation, we can always put 
H, P, J, K equal to the operators (2.1)-(2.4). But, 
when H, P, J, K have the canonical forms (2.1)-(2.4), 
the only solution for x of Eqs. (B) is the canonical co
ordinate (2.5). 

These simple facts are included as a basis for nor
malizing our general procedures and for comparison 
with later results. We have seen that for a particle of 
mass m and zero spin Eqs. (A) and (B) determine the 
operators H, P, J, K, and x uniquely up to unitary 
equivalence. [Eq. (C) is then automatically satisfied 
in this case.] When H, P, J, K have the canonical 
forms (2.1)-(2.4), x is equal to the canonical coordinate 
(2.5). All of the equations (B) are necessary for estab
lishing this relation between the position variable x and 
the Lorentz group generators Hy P, J, K. 

The zero spin case is distinguished by the simplicity 
of the solution of Eqs* (A), (B), and (C). In this case 
all of Pryce's definitions (c), (d), (e) of position 
variables6 coincide; they are all equal to the canonical 
position x= q when H, P, J, K have the canonical forms 
(2.1)-(2.4). The canonical position (2.5) is also the 
position operator found by Newton and Wigner.5 If 
this is not obvious, it is because of a difference in nor
malization of wave functions. Our operators can be 

9 E. P. Wigner, Ann. Math. 40, 149 (1939); V. Bargmann, ibid. 
48, 568 (1947); V. Bargmann and E, P. Wigner, Proc. Natl. Acad. 
Sci. U. S. 34, 211 (1948). 

defined on momentum space wave functions with the 
inner product 

(U)= U(v)*Hv)dsp. (2.7) 

Newton and Wigner work with wave functions nor
malized according to the invariant inner product 

(*,*) = /tfGOVfp) (P 2 +^ 2 ) " 1 / 2 ^ . (2.8) 

The operators q, which are Hermitian in the inner 
product (2.7), are not Hermitian in the inner product 
(2.8). The corresponding operators which are Her
mitian in the inner product (2.8) are 

X = (p2+ w 2) l /4 q ( p 2 + w 2) - l /4 (2.9) 

= q-;(l/2)(p2+w2)-1p. 

These are the Newton-Wigner position operators. A 
similar operation yields canonical forms for H, P, J, K 
that are appropriate for use with the inner product 
(2.8). The operators H, P, J remain in the forms (2.1)-
(2.3) but K becomes 

K = # q . (2.10) 

One can check explicitly that Eqs. (2.1)-(2.3), (2.10), 
and (2.9) are solutions of Eqs. (A), (B), and (C) for 
H, P, J, K, and x, respectively. For the zero spin case 
there is no problem in finding a position operator x 
satisfying the conditions (B) for relativistic covariance 
plus the conditions (C) of commuting components. 
Every approach seems to lead to the same answer. The 
complications occur with the introduction of spin. 

III. PARTICLES WITH SPIN 

We consider next a single particle of positive mass m 
and spin s, where s may have any one of the values 
0, 1/2, 3/2, 2, • • •. The relevant solution of Eqs. (A) 
consists of Hermitian operators H, P, J, K which gen
erate the irreducible unitary representation of the in-
homogeneous Lorentz group which is characterized by 
mass m, spin s, and positive energy.9 A canonical form 
for these operators is 

H^fjf+nfi)1'*, (3.1) 

P = P , (3.2) 

J=qXp+S, (3.3) 

K=±(Hq+qH)+(H+tn)-ipX$, (3.4) 

where q, p, and S are an irreducible set of Hermitian 
operators satisfying the commutation relations 

&y,5*]=0=[>y,5*], (3.5) 

Lqhpk]=5jk, 
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for j , k, n= 1,2,3. These operators can be defined on a 
Hilbert space which is the direct product of the mo
mentum space wave functions on which q and p are 
irreducible, and the 2 s + l component spin vectors on 
which S generates an irreducible representation of the 
rotation group. This representation is characterized by 
the number 

s(s+l) = $*=S1*+S2*+Ss\ (3.6) 

To within unitary equivalence, the operators (3.1)-
(3.4) are the only solution of Eqs. (A) for a particle of 
mass m and spin s. For, to within unitary equivalence, 
there is only one irreducible unitary representation of 
the inhomogeneous Lorentz group with positive mass 
m, integral or half-integral spin s, and positive energy.9 

By making a unitary transformation, we can always 
put H, P, J, K equal to the operators (3.1)-(3.4). 

Now we want to look for operators x satisfying 
Eqs. (B) and (C). We do not try to find all possible 
solutions. We restrict ourselves to considering only 
operators that are linear in the spin variables S. This 
means that we find all possible solutions only for the 
case s = 1/2. We also find the solutions which are valid 
for all values of s and maintain their form as functions 
of q, p, and S independently of the value of s. In other 
words, for s>l we find those solutions which can also 
be made to be solutions for s = 1/2 by simply reinter
preting S as spin 1/2 operators. [[This is motivated by 
the fact that such a solution is the center of interest in 
the next section. We also note that the canonical solu
tions (3.1)-(3.4) of Eqs. (A) are of exactly this type.] 
We might overlook, for example, a solution for s=l 
which contains terms quadratic in S. 

If H, P, J, K have the canonical forms (3.1)-(3.4), 
the most general solution of Eqs. (B) for Hermitian 
operators x which are of at most linear order in the 
operators S is 

- w r ^ f f + w ^ p X S , (3.7) 

where a is any real number. For a— 0, this is the position 
operator (d) found by Pryce.6 For any value of a, the 
operators (3.7) satisfy Eqs. (B) independently of the 
value of s. But for positive s there is no value of a for 
which the operators (3.7) satisfy Eqs. (C). For nonzero 
spin, and with the canonical forms (3.1)-(3.4) for H, 
P, J, K, there is no solution of Eqs. (B) and (C) for 
operators x which are of at most linear order in S. 

If we abandon the canonical forms (3.1)-(3.4) for 
H, P, J, K, we still cannot find a solution of Eqs. (B) 
and (C) which is valid for the case s= 1/2. For suppose 
that H, P, J, K, and x satisfy Eqs. (B) for s= 1/2. By 
making a unitary transformation, we can put H, P, J, 
K equal to the canonical operators (3.4). We thus 
obtain a solution of Eqs. (B) with the canonical opera
tors (3.1)-(3.4) and the unitary transform of x. But 
the unitary transform of x must be of at most linear 
order in S since higher orders do not occur for s= 1/2. 

Hence, the unitary transform of x must be one of the 
operators (3.7). I t follows that the different components 
of x do not commute; we do not have a solution of 
Eqs. (C). 

For a particle of positive mass there is no solution of 
Eqs. (A), (B), and (C) which is valid for all values of 
the spin; in particular, there is no solution for s= 1/2. 
All of the equations (B) and (C) are necessary to 
produce this exclusion. With the canonical forms 
(3.1)-(3.4) for H, P, J, K, the operators (3.7) for x 
satisfy all except Eqs. (C) and the canonical position 
x = q satisfies all except the last of Eqs. (B), the con
dition for Lorentz covariance. The canonical position 
x = q is the same as the position variable (e) found by 
Pryce6 and the position operator found by Newton and 
Wigner.5 These authors have also concluded that it is 
not Lorentz covariant. 

IV. PARTICLES AND ANTIPARTICLES 

Let us now extend the scope of our investigation and 
consider a particle and antiparticle of positive mass m 
and spin s where s may have any one of the values 0, 
1/2, 1, 3/2, 2 • • •. The relevant solution of Eqs. (A) 
now consists of Hermitian operators H, P, J, K which 
generate a direct sum of two irreducible unitary repre
sentations of the inhomogeneous Lorentz group, both 
having mass m and spin s, but one having positive and 
the other negative energy. A canonical form for these 
operators is 

#=P3(p2+w2)1 / 2=p3TF, (4.1) 

P = P , (4.2) 

J = q X p + S , (4.3) 

K = | (Hq+qB)+p*(p*B+m)-ipX S, 
= hp*(Wq+qW)+pz(W+tn)-1pXS, V ' } 

where W= (p2+w2)1/2 and where q, p, S, and 9 are an 
irreducible set of Hermitian operators satisfying the 
commutation and anticommutation relations 

[gy,0*]=O= 

[»A]=o= 
Dtop*]=o= 

DSy,p*]= 

[&,#*]= 
[Sy,S*] = 

>[PhPh] = 

PjPh+PkPj = 

= LPJypk] , 
= LpJ>Sk] , 

= ZPhPh] > 

=0, 

=5jk, 

- Cyfcnow, 

= ZCjknPn j 

= Ibjh, 

for j , k, n~ 1,2,3. These operators can be defined on a 
Hilbert space which is the direct product of the mo
mentum space wave functions on which q and p are 
irreducible, the 2s-\-1 component spin vectors on which 
S generates the irreducible representation of the rota
tion group characterized by the number .y(s+l) = S2, 
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and the two component vectors on which g are an irre
ducible set of Pauli matrices. We take p3 to be diagonal: 

This differs from the preceding section only in that 
we have doubled the number of components of our wave 
functions to allow for the negative energy or an tip article 
states. The fact that, to within unitary equivalence, 
there is only one irreducible unitary representation of 
the inhomogeneous Lorentz group for mass m, spin s, 
and positive (negative) energy means that the canonical 
forms (4.1)-(4.4) for H,Y, J, K are unique, to within 
unitary equivalence, as functions of q, p, and S. Their 
dependence on the operators 9 amounts to nothing 
more than the insertion of a minus sign factor in H and 
K for the antiparticle states. 

Now, in contrast to the situation of the preceding 
section, we do have a solution for x of Eqs. (B) and (C) 
which is valid for the case s= 1/2. I t is the operator x 
which appears in the Dirac equation. More specifically, 
it is the Foldy-Wouthuysen representation7 of the 
Dirac equation x which is in accord with the canonical 
forms (4.1)-(4.4) for H, P, J, K. In our notation (which 
is the same as that of Dirac's book10: a=2piS, P=pz), 
this is 

x=q+p2W-1S-p2W~2(W+ni)-1(p'S)p 
+W~1(W+m)-1pXS. (4.6) 

With the canonical forms (4.1)-(4.4) for H, P, J, K, 
the operators (4.6) are a solution for x of Eqs. (B) and 
(C), not only for the case s= 1/2, but for all values of s\ 

Now let us see to what extent we have found a unique 
solution for x. If we assume the canonical forms (4.1)-
(4.4) for H, P, J, K, we find (after a certain amount of 
work) that the most general solution for x of Eqs. (B) 
and (C), for the case s= 1/2, is 

x = q + p ^ 4 sinB$+p2A cosJ3p 

-Pl(W-2(W+m)-1 $mB-2wrlBf cos£) (p. S)p 

-P2(W-2(W+tn)-1 cos£+2m- 1 £ ' sin£)(p-S)p 

+P1W-1 sinBS+p2W-1 cosBS 

+W-1(W+m)-1pXS, (4.7) 

where A and B are arbitrary real functions of p2 and 
B' is the derivative of B with respect to p2. 

If we allow operators H, P, J, K that differ from the 
canonical forms (4.1)-(4.4) only as functions of q, p, 
and S, we will find solutions for H, P, J, K, and x that 
are unitarily equivalent to the operators (4.1)-(4.4) and 
(4.7). As long as H, P, J, K have the canonical de
pendence on 9, namely, a plus or minus sign factor in 
H and K for the particle and antiparticle states, we can 
always put them equal to the operators (4.1)-(4.4) by 
making a unitary transformation. In this sense we have 

found a solution that is unique to within unitary equi
valence for the case s= 1/2. 

Further restrictions are necessary if the operators 
(4.7) are to be a solution for x of Eqs. (B) and (C) for 
values of s other than 1/2. In particular, in order for the 
operators (4.7) to satisfy Eqs. (C) for s=l it is neces
sary and sufficient that B' = 0. This implies that B is 
just a real number. Now pi, p2, and B occur in the 
operators (4.7) only in the combination 

Pisin5+p2cosI>. 

If we choose an equivalent set of operators 9 in which 
this combination is called p2 and in which p3 is the same 
as before, we have 

x = q + p 2 ^ p - p 2 P F - 2 ( ^ + w ) - 1 ( p - S ) p 
+p2W~1S+W-1(W+m)~lj}XS. (4.8) 

With the canonical forms (4.1)-(4.4) for H, P, J, K, 
the operators (4.8) for x satisfy Eqs. (B) and (C) for 
all values of s. This is the most general solution which is 
valid for all values of s and which maintains its form as 
functions of q, p, S, and 9 independently of the value 
of s. 

The Dirac position (4.6) is the particular case of the 
solution (4.8) for which A = 0. Of the general solutions 
(4.8), the Dirac position (4.6) is the only one which 
reduces to the canonical coordinate x = q when S = 0. 
In summary then, we have found that (assuming the 
canonical dependence of H, P, J, K on 9) the Dirac 
position (4.6) is the unique solution [to within unitary 
transformations that change the form of H, P, J, K as 
function of q, p, and S from that of the canonical 
operators (4.1)-(4.4)] of Eqs. (B) and (C) which is 
valid and has the same form for all values of s and 
reduces to the canonical coordinate x = q when s = Q. 

We note that this position operator retains also the 
strange properties of the spin-1/2 Dirac position opera
tor. In particular, it gives a velocity which has no sen
sible physical interpretation. I t is impossible to satisfy 
both Eqs. (B) for relativistic covariance and all of the 
other properties that one might expect of a position 
operator. 

We were led to the position operator (4.6) by recog
nizing that for s=l/2 we had a solution of Eqs. (B) 
and (C) by the operator x which appears in the Dirac 
equation. We can regain the Dirac equation by making 
an inverse Foldy-Wouthuysen transformation7 which 
will take the canonical Hamiltonian (4.1) to the Dirac 
Hamiltonian. We prefer to state this in a way that illu
minates the role of the covariant position operator. 
The inverse Foldy-Wouthuysen transformation is just 
the unitary transformation which takes the Dirac posi
tion operator (4.6) to the canonical coordinate x = q 
while leaving the canonical forms (4.2) and (4.3) for 
P and J unchanged. If 

V=-P2p~l(p• S) tan^1 (p/m) (4.9) 
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(where p2 = p2) and if x is the Dirac position (4.6), then7 

eivxe-iv==q (4>10) 

eivpe-iv=v (4>11) 

e i y ( q X p + S ) < r ^ = q X p + S . (4.12) 

Furthermore, the unitary transformation eiV, with V 
the operator (4.9), is essentially the unique unitary 
transformation with the properties (4.10)-(4.12). For 
any additional unitary transformation would have to 
leave q, p, and S unchanged and so could only be a 
transformation of the operators 9. These statements are 
all valid for all values of sy not just for the case s= 1/2. 
The inverse Foldy-Wouthuysen transformation, just 
like the Dirac position operator (4.6), maintains its 
essential properties under a generalization from spin 1/2 
to any integral or half-integral spin. 

V. THE SPIN i AND SPIN 1 EQUATIONS 

Under the generalized inverse Foldy-Wouthuysen 
transformation with the operator (4.9), which is appli
cable for all values of s, the canonical Hamiltonian (4.1) 
becomes 

eiVpzWe-iv=W{Pz cos[2^~1 (p• S) t a n - ^ / w ) ] 

+ p i s inpjT'fp- S) t a n - ^ / w ) ] } , (5.1) 

where again p2 = p2 and W= (p2+w2)1/2. 

Spin \ 

For the case s= 1/2 the operator (5.1) reduces to 

P3W+pi2(p-s) = /3w+a-p (5.2) 

which is the Hamiltonian of the Dirac equation. Here we 
have simply regained the familiar Foldy-Wouthuysen 
spin 1/2 transformation7 which has been the basic 
motivation for our more general statements. But in a 
certain sense we may regard what we have done as a 
derivation of the Dirac equation from fundamental 
postulates of relativistic invariance. We began with 
the canonical forms for the generators H, P, J, K of an 
irreducible unitary representation of the inhomogeneous 
Lorentz group with mass m and spin s and looked for 
position operators x satisfying the conditions (B) for 
relativistic covariance and the conditions (C) of com
muting components. Being unable to find a solution for 
x on the states of a single particle, we enlarged the scope 
of our study to include the antiparticle states. We then 
found the generalized Dirac position (4.6) as a rather 
unique solution for x. The generalized inverse Foldy-
Wouthuysen transformation appeared as the unitary 
transformation which changes the Dirac position (4.6) 
into the canonical coordinate x = q without changing 
the canonical forms (4.2) and (4.3) for P and J. Under 
this transformation the canonical Hamiltonian (4.1) 
goes into the Dirac equation Hamiltonian (5.2) for the 
case s=l/2. I t makes sense that in looking for a mani

festly invariant local wave equation we should trans
form to a representation in which the covariant position 
operator is the canonical coordinate. But, as we 
presently see, this does not guarantee the desired local 
equation. Nevertheless, had we known nothing about 
the Dirac equation, we could have found it by the 
method just outlined. 

Spin 1 

For the case s=l, the Hamiltonian operator (5.1) 
reduces to 

p 3^-p32Pr- 1(p-S) 2+Pi2wPF- 1(p-S) . (5.3) 

This gives a Schrodinger wave equation 

i(d/dt)$=H$, (5.4) 

with H the operator (5.3), 9 and S six by six matrices, 
and x// a six-component wave function. In contrast to 
the Dirac equation, this equation is not local in co
ordinate space. This is not surprising because we expect 
that for integral spin a local invariant equation must 
involve an indefinite metric. We note that the Hamil
tonian (5.3) is Hermitian. 

If we make the identification 

< ) 

F = W-1(2W)'li2{m(E+iWA)--V X (E-iWA) 
- w ^ v C v - E ) } (5.5) 

G = W-1(2W)-ll2{m(E-iWA)+V X (E+iWA) 

— w - 1 v ( v - E ) } 

we find that the Schrodinger equation (5.4) with the 
Hamiltonian (5.3) is equivalent to the Proca 
equations8,11 

( d / d / ) A = - E - V 0 , 

( a M ) E = w 2 A + v X B , (5.6) 

<j>=— m~2V -~E, 

B = V X A , 

which are local invariant wave equations for spin 1. 
[Here we have used the standard Pauli matrices for 
9 and the standard spin 1 matrices (Sj)kn = iejkn.'] 

The generalized inverse Foldy-Wouthuysen trans
formation by itself does not take us to local invariant 
equations for spin 1; it gives us a Schrodinger equation 
(5.4) with the Hamiltonian (5.3). The further manipu
lations (5.5) are needed to get the local invariant 
equations (5.6). This is not surprising. The same sort 
of thing happens for zero spin. For zero spin the gen
eralized inverse Foldy-Wouthuysen transformation is 

10 P. A. M. Dirac, Principles of Quantum Mechanics (Oxford 
University Press, Oxford, England, 1958). 

11 G. Wentzel, Quantum Theory of Fields (Interscience Pub
lishers, Inc., New York, 1949), Chap. III . 
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just the identity transformation; the generalized co-
variant Dirac position operator is just the canonical 
coordinate x=q. So the generalized inverse Foldy-
Wouthuysen transformation leaves the Hamiltonian in 
the canonical form (4.1) for zero spin. But considerably 
more manipulation is needed to get the Klein-Gordon 
equation.8 

The equations (5.6) can be put directly into the 
Schrodinger equation form (5.4) with a six-component 
wave function whose components are A and w-1E.8'n'21 

The Hamiltonian for this equation is not Hermitian 
but is pseudo-Hermitian in the appropriate indefinite 
metric.13 From our point of view, the Schrodinger equa
tion with the Hamiltonian (5.3), which is obtained by 
the generalized inverse Foldy-Wouthuysen transforma
tion from the canonical Hamiltonian (4.1), is more 
nearly the spin 1 analog of the Dirac equation. Whether 
it will be more useful remains to be seen. 

Various authors have developed the transformation 
which connects the canonical Hamiltonian (4.1) directly 
to the Schrodinger equation form of Eqs. (5.6) with the 

12 E. M. Corson Tensors, Spinors, and Relativistic Wave Equa
tions (Hafner Publishing Company, New York, 1953), especially 
Sees. 26(b) and 39(d) (i). 

13 K. M. Case, Phys. Rev. 95, 1323 (1954). 

1. INTRODUCTION 

THE problem of replacing the quantum-mechanical 
Born (or perturbation) series by a more con

vergent expansion is already a well-studied one. Its 
importance arises from the fact that many cases of 
great physical interest cannot be treated by means of 
that series. Bound-state and resonace problems fall in 
this category whenever the unperturbed problem yields 
only a continuum of noninteracting states. This is 

* Research supported by the National Science Foundation. 
f Present address: Atomic Energy Research Establishment, 

Harwell, England. 

wave function whose components are A and w~E.8-13 

This is not a unitary transformation but is pseudo-
unitary in the appropriate indefinite metric.13 From our 
point of view, it appears as the combination of the 
generalized inverse Foldy-Wouthuysen transformation 
and the manipulations (5.5). This transformation does 
not have all of the properties of the Foldy-Wouthuysen 
transformation and cannot be put to all of the same 
uses. For example, if we use it to transform the position 
operators x which appear as the independent variables 
in the equations (5.6) to the representation in which 
the Hamiltonian has the canonical form (4.1), we get 
an operator14 which does not satisfy the last of Eqs. (B), 
the condition for Lorentz covariance. 

Finally, we want to point out that we have exposed 
several simple features of the spin 1/2 situation which 
are not shared by spin 0 or 1. In particular, the inverse 
Foldy-Wouthuysen transformation for s = 1/2 gives us 
the local invariant Dirac equation. The analogous 
equations for s = 0 and 1 are not local. 
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precisely the situation one must face in relativistic field 
theory. The current experimental results with strongly 
interacting particles only emphasize the need for im
proved calculational procedures in this area. 

Among the many existing approaches1-3 to the ques-
1 See, for example, P. M. Morse and H. Feshbach, Methods of 

Theoretical Physics (McGraw-Hill Book Company, Inc., New 
York, 1953), Part II, Chap. 9. 

2 For recent approaches see M. Rotenberg, Ann. Phys. (N. Y.) 
21, 579 (1963), and its bibliography. Rotenberg's method, like the 
present one, is based on a regrouping of the Born terms, designed 
to accelerate convergence. His "regrouped" Eq. (59), in particular, 
should be compared with our formulation, in which a true re
grouping only occurs as an intermediate step. 

3 A method of circumventing the convergence difficulty of 
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The Born series for a quantum-mechanical Green function is studied. A prescription is given for making 
"best" use of the information contained in the first few terms of that series, and, in particular, for calculating 
bound states or resonances from them. This prescription is based on heuristic convergence arguments whose 
formal steps are somewhat reminiscent of renormalization group methods. The present considerations may 
be applied to potential scattering as well as to quantum field theory. They are expected to be valid for low-
energy phenomena and finite-range forces. The prescription is tested, using only the first two Born terms, 
in the case of a nonrelativistic particle moving in a Yukawa potential: For well depths producing a single 
shallow bound state, the usual effective-range results are closely reproduced, and, in some ways, improved 
upon. 


